

    
      
          
            
  


Welcome to DESDEO’s documentation!

Decision Support for computationally Demanding Optimization problems

DESDEO is a free and open-source Python-based framework for developing and experimenting with interactive multiobjective optimization. It contains implementations of some interactive methods and modules that can be utilized to implement further methods.

We welcome you to utilize DESDEO and develop it further with us.
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For news and other information related to DESDEO, see the official website [https://desdeo.it.jyu.fi].
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Introduction


DESDEO

Decision Support for computationally Demanding Optimization problems

DESDEO is a free and open-source Python-based framework for developing and experimenting with interactive multiobjective optimization.

DESDEO contains implementations of some interactive methods and modules that can be utilized to implement further methods.

We welcome you to utilize DESDEO and develop it further with us.

DESDEO brings interactive methods closer to researchers and practitioners worldwide by providing them with implementations of interactive methods.

DESDEO is part of DEMO (Decision analytics utilizing causal models and multiobjective optimization which is the thematic research area of the University of Jyväskylä.



Mission

The mission of DESDEO is to increase awareness of the benefits of interactive methods make interactive methods more easily available and applicable. Thanks to the open architecture, interactive methods are easier to be utilized and further developed. The framework consists of reusable components that can be utilized for implementing new methods or modifying the existing methods. The framework is released under a permissive open source license.



Multiobjective optimization

In multiobjective optimization, several conflicting objective functions are to be optimized simultaneously. Because of the conflicting nature of the objectives, it is not possible to obtain individual optima of the objectives simultaneously but one must trade-off between the objectives.



Interactive methods in multiobjective optimization

Interactive methods are iterative by nature where a decision maker (who has substance knowledge) can direct the solution process with one’s preference information to find the most preferred balance between the objectives. In interactive methods, the amount of information to be considered at a time is limited and, thus, the cognitive load set on the decision maker is not too demanding. Furthermore, the decision maker learns about the interdependencies among the objectives and also the feasibility of one’s preferences.



The Research Projects Behind DESDEO


About the Multiobjective Optimization Group

The Multiobjective Optimization Group developes theory, methodology and
open-source computer implementations for solving real-world decision-making
problems. Most of the research concentrates on multiobjective optimization
(MO) in which multiple conflicting objectives are optimized simultaneously
and a decision maker (DM) is supported in finding a preferred compromise.



About the DESDEO research project

DESDEO contains implementations of some interactive methods and modules that
can be utilized to implement further methods. DESDEO brings interactive
methods closer to researchers and practitioners world-wide, by providing them
with implementations of interactive methods.

Interactive methods are useful tools for decision support in finding the most
preferred balance among conflicting objectives. They support the decision
maker in gaining insight in the trade-offs among the conflicting objectives.
The decision maker can also conveniently learn about the feasibility of one’s
preferences and update them, if needed.

DESDEO is part of DEMO (Decision analytics utilizing causal models and
multiobjective optimization) which is the thematic research area of the
University of Jyväskylä (jyu.fi/demo).

We welcome you to utilize DESDEO and develop it further with us.



About DAEMON

The mission of DAEMON is method and software development for making better
data-driven decisions. The project considers data and decision problems from
selected fields as cases to inspire the research and demonstrate the added
value.

In DAEMON, we support optimizing conflicting objectives simultaneously by
applying interactive multiobjective optimization methods, where a decision
maker (DM) incorporates one’s domain expertise and preferences in the
solution process. Overall, we model and formulate optimization problems based
on data, so that DMs can identify effective strategies to better understand
trade-offs and balance between conflicting objectives. In this, we
incorporate machine learning tools, visualize trade-offs to DMs and consider
uncertainties affecting the decisions.




Publications Related to DESDEO

See publications [https://desdeo.it.jyu.fi/publications/].





          

      

      

    

  

    
      
          
            
  


Software


Modular Structure

The DESDEO framework consists of various modules defined as Python software
packages. The modular structure can be seen in the image below, and a short
description of the different packages follows. The descriptions contain
links to the invdividual documentation pages for each of the package.

[image: _images/desdeo-structure.png]

desdeo-problem

The desdeo_problem [https://desdeo-problem.readthedocs.io/en/latest/] package contains tools and classes for defining and
modelling multiobjective optimization problems. The defined problem classes
can be used in the other packages in the DESDEO framework, such as
desdeo_mcdm [https://desdeo-mcdm.readthedocs.io/en/latest/] and desdeo-emo.



desdeo-tools

The desdeo_tools [https://desdeo-tools.readthedocs.io/en/latest/] package contains tools to facilitate different tasks in the
other packages in the DESDEO framework. These tools include, for example,
scalarization routines and various solvers.



desdeo-emo

The desdeo_emo [https://desdeo-emo.readthedocs.io/en/latest/] package contains evolutionary algorithms for solving multiobjective optimization problems.
These algorithms include, for example, interactive RVEA [https://ieeexplore.ieee.org/document/7386636].



desdeo-mcdm

The desdeo_mcdm [https://desdeo-mcdm.readthedocs.io/en/latest/] package contains traditional methods for performing
interactive multiobjective optimization. These methods include, but are not
limited to, Synchronous NIMBUS [https://www.sciencedirect.com/science/article/pii/S0377221704005260?via%3Dihub] and E-NAUTILUS [https://www.sciencedirect.com/science/article/pii/S0377221715003203?via%3Dihub], for example.



desdeo-vis

(coming soon) The desdeo_vis package contains tools for building visualizations.



desdeo-mix

(coming soon) The desdeo_mix package contains routines and algorithms which
make use of the other packages in the DESDEO framework, and warrant their own
implementation to be included as part of the framework.




Installation

To install a single package, see that package’s documentation. To install
the whole DESDEO framework, follow one of the alternatives given below
according to the operating system on the machine you plan to install DESDEO
on.


Linux and Windows

The recommended way of installing the DESDEO framework is to use pip by invoking the command:

pip install desdeo





For developing, usage of the poetry dependency management tool is
recommended. However, no framework code should be contributed to the main
DESDEO package. Instead, contributions should go to the relevant subpackage,
which are listed here. See the documentation for the individual for further
details. See Modular Structure for links to the individual documentations.



OSX

Instruction coming eventually.










          

      

      

    

  

    
      
          
            
  


Guides and Examples


Guides



	A quick overview of some of DESDEO’s main capabilities





More guides to be added eventually.



Examples


	How to use interactive methods: examples in desdeo-mcdm’s documentation [https://desdeo-mcdm.readthedocs.io/en/latest/examples.html#examples]


	Examples on how to apply useful utilities: examples desdeo-tools’s documentation [https://desdeo-tools.readthedocs.io/en/latest/examples.html#examples]


	How to define different problems: examples in desdeo-problem’s documentation [https://desdeo-problem.readthedocs.io/en/latest/examples.html#examples]








          

      

      

    

  

    
      
          
            
  


A quick overview of some of DESDEO’s main capabilities

Note: This notebook contains the code shown in the three use cases considered in the article titled DESDEO: an open framework for interactive multiobjective optimization. Cells containing code found in the article will be marked accordingly (by a comment on the first line). The code shown may vary from the one in the article due to new additions and/or changes in the DESDEO framework. This is to ensure that the code shown can be run and experimented with in the future as well.

This overview should give the novice user interested in DESDEO a brief overview of how the framework may be utilized. We will consider a multiobjective optimization problem with five objectives and two variables. The problem will be treated as an analytical problem, a data-based problem, and a computationally expensive problem. We will show how the problem can be solved utilizing MCDM and EMO methods both separately and in tandem (hybridizing them). Note: Link to article with additional
information to be added later.


The probelm

The considered problem - the river pollution problem - in the use cases is presented here [https://ieeexplore.ieee.org/document/35354]. Its analytical definiton can be stated as:


\begin{equation}
\begin{array}{rll}
\text{min}  & f_1({\mathbf{x}}) =& - 4.07 - 2.27 x_1 \\
\text{min}  & f_2({\mathbf{x}}) =& - 2.60 - 0.03 x_1  - 0.02 x_2 \\
&&\quad - \frac{0.01}{1.39 - x_1^2} - \frac{0.30}{1.39 - x_2^2} \\
\text{min}  & f_3({\mathbf{x}}) =& - 8.21 + \frac{0.71}{1.09 - x_1^2} \\
\text{min}  & f_4({\mathbf{x}}) =& - 0.96 + \frac{0.96}{1.09 - x_2^2} \\
\text{min}  & f_5({\mathbf{x}}) =& \max\{|x_1 - 0.65|, |x_2 - 0.65|\} \\
&&\\
\text{s.t.}  && 0.3 \leq x_1, x_2 \leq 1.0, \\
\end{array}
\end{equation}
where each objective is to be minimized subject to box-constraints imposed on the variables.



Use case 1: solving problems with analytical formulations

If we wish to solve a problem with an analytical formulation, such as the river pollution problem, we can proceed as follows. First, we will define the problem in DESDEO. We import some required modules from desdeo-problem for this purpose. desdeo-problem contains modules that are used to define multiobjective optimization problems. We import the following modules:


[1]:






# Source code 1
import numpy as np

from desdeo_problem.problem import MOProblem
from desdeo_problem.problem import Variable
from desdeo_problem.problem import ScalarObjective







Next ,we define the objective functions of the river pollution problem first as Python functions and then wrap them inside instances of the ScalarObjective class. The scalar in the name implies that the objective is itself a scalar-valued function (i.e., \(\mathbb{R}^n \to \mathbb{R}\) for some positive \(n\)). The resulting objects are then stored in a list. In code:


[2]:






# Source code 2
def f_1(x: np.ndarray) -> np.ndarray:
    x = np.atleast_2d(x)  # This step is to guarantee that the function works when called with a single decision variable vector as well.
    return -4.07 - 2.27*x[:, 0]

def f_2(x: np.ndarray) -> np.ndarray:
    x = np.atleast_2d(x)
    return -2.60 - 0.03*x[:, 0] - 0.02*x[:, 1] - 0.01 / (1.39 - x[:, 0]**2) - 0.30 / (1.39 + x[:, 1]**2)

def f_3(x: np.ndarray) -> np.ndarray:
    x = np.atleast_2d(x)
    return -8.21 + 0.71 / (1.09 - x[:, 0]**2)

def f_4(x: np.ndarray) -> np.ndarray:
    x = np.atleast_2d(x)
    return -0.96 - 0.96 / (1.09 - x[:, 1]**2)

def f_5(x: np.ndarray) -> np.ndarray:
    return np.max([np.abs(x[:, 0] - 0.65), np.abs(x[:, 1] - 0.65)], axis=0)

objective_1 = ScalarObjective(name="f_1", evaluator=f_1)
objective_2 = ScalarObjective(name="f_2", evaluator=f_2)
objective_3 = ScalarObjective(name="f_3", evaluator=f_3)
objective_4 = ScalarObjective(name="f_4", evaluator=f_4)
objective_5 = ScalarObjective(name="f_5", evaluator=f_5)

objectives = [objective_1, objective_2, objective_3, objective_4, objective_5]







When defining objectives, it is expected that they may be called with either a single set of decision variables or a set of such sets. I.e.,:


[3]:






# single set of decision variables
x_single = np.array([0.8, 0.5])

# set of sets
x_multi = np.array([[0.8, 0.5], [0.31, 0.88], [0.34, 0.33]])

# Both sets work when evaluated with the defined objective functions.
# Notice how we get one value for each provided set of decision variables.
print(f"f_1({x_single}) = ", f_1(x_single))
print(f"f_1({x_multi}) = ", f_1(x_multi))













f_1([0.8 0.5]) =  [-5.886]
f_1([[0.8  0.5 ]
 [0.31 0.88]
 [0.34 0.33]]) =  [-5.886  -4.7737 -4.8418]






The variables of the problem are defined in a very similar fashion compared to the objectives:


[4]:






# Source code 3
x_1 = Variable("x_1", 0.5, 0.3, 1.0)
x_2 = Variable("x_2", 0.5, 0.3, 1.0)

variables = [x_1, x_2]







Notice the arguments given to the initializer of ‘Variable’: the last and second-to-last define the variabels upper and lower bounds, respectively, while the second argument defines a variable’s initial value and current value, which is sometimes useful information. The upper and lower bounds are optional; if not provided, appropiate infinims will be assumed for the bounds. The documentation should confirm these claims regarding the arguments:


[5]:






help(Variable)













Help on class Variable in module desdeo_problem.problem.Variable:

class Variable(builtins.object)
 |  Variable(name: str, initial_value: float, lower_bound: float = -inf, upper_bound: float = inf) -> None
 |
 |  Simple variable with a name, initial value and bounds.
 |
 |  Args:
 |      name (str): Name of the variable
 |      initial_value (float): The initial value of the variable.
 |      lower_bound (float, optional): Lower bound of the variable. Defaults
 |          to negative infinity.
 |      upper_bound (float, optional): Upper bound of the variable. Defaults
 |          to positive infinity.
 |
 |  Attributes:
 |      name (str): Name of the variable.
 |      initial_value (float): Initial value of the variable.
 |      lower_bound (float): Lower bound of the variable.
 |      upper_bound (float): Upper bound of the variable.
 |      current_value (float): The current value the variable holds.
 |
 |  Raises:
 |      VariableError: Bounds are incorrect.
 |
 |  Methods defined here:
 |
 |  __init__(self, name: str, initial_value: float, lower_bound: float = -inf, upper_bound: float = inf) -> None
 |      Initialize self.  See help(type(self)) for accurate signature.
 |
 |  get_bounds(self) -> Tuple[float, float]
 |      Return the bounds of the variables as a tuple.
 |
 |      Returns:
 |          tuple(float, float): A tuple consisting of (lower_bound,
 |              upper_bound)
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)
 |
 |  current_value
 |
 |  initial_value
 |
 |  name







Most of the classes, their methods, and functions should be equipped with docstrings so that the help utility should give some insight on how to use them.

We are now ready to define the multiobjective optimization problem itself. Most of the work has already been done in defining the objectives and variables:


[6]:






# Source code 4
mo_problem = MOProblem(variables=variables, objectives=objectives)







At this point, we could start solving the problem with various methods found in DESDEO or we can use the problem in various other ways as well to gain additional insight. Since we will be using Synchronous NIMBUS to solve the problem in this use case, we need knowledge of the upper and lower bounds of the possible objective values contained in the set of feasible solutions. For this, we can compute the ideal and nadir points of the problem. The simplest way to compute the ideal and approximate
the nadir is to use a pay-off table. A method based on the pay-off table to compute the ideal and (approximation of) the nadir point is found in the utilities module of the desdeo-mcdm package. The ideal and nadir points are then stored as attributes of the mo_problem object to readily access them later on. We proceed as follows:


[7]:






# Source code 5
from desdeo_mcdm.utilities import payoff_table_method

ideal, nadir = payoff_table_method(mo_problem)

mo_problem.ideal = ideal
mo_problem.nadir = nadir







The ideal and nadir points should give us an idea of the ranges of the objectives. Indeed, this is the case:


[8]:






print(f"Ideal point: {mo_problem.ideal}")
print(f"Nadir point: {mo_problem.nadir}")
print(f"Ideal strictly better than nadir?: {np.all(mo_problem.ideal <= mo_problem.nadir)}")













Ideal point: [ -6.33999773  -2.8643435   -7.49999957 -11.62604407   0.        ]
Nadir point: [-4.75100227 -2.76563265 -0.32128642 -1.92000058  0.349999  ]
Ideal strictly better than nadir?: True






We can now actually begin solving the river pollution problem using the Synchronous NIMBUS method. As we have already defined an instance of MOProblem, initializing and starting the method is straight forward:


[9]:






import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

# Source code 6
from desdeo_mcdm.interactive.NIMBUS import NIMBUS

nimbus = NIMBUS(mo_problem)

classification_request, _ = nimbus.start()







The start method returns two requests of which the first one is of interest here. Its contents attribute is a dict the keys of which we can inspect:


[10]:






classification_request.content.keys()








[10]:







dict_keys(['message', 'objective_values', 'classifications', 'levels', 'number_of_solutions'])






In the content of each request, at least the message entry exists. This entry contains information on how to proceed:


[11]:






print(classification_request.content["message"])













Please classify each of the objective values in one of the following categories:
        1. values should improve '<'
        2. values should improve until some desired aspiration level is reached '<='
        3. values with an acceptable level '='
        4. values which may be impaired until some upper bound is reached '>='
        5. values which are free to change '0'
Provide the aspiration levels and upper bounds as a vector. For categories 1, 3, and 5,the value in the vector at the objective's position is ignored. Supply also the number of maximumsolutions to be generated.






We can interact with the method by defining the response, an attribute of the request, following the instructions contained in the message printed above. To help us in this task, we can first inspect the current objective values as:


[12]:






classification_request.content["objective_values"]








[12]:







array([ -5.74637016,  -2.77951722,  -6.90637204, -11.62642964,
         0.349999  ])






We may then define our response with the required classifications to continute iterating the method:


[13]:






# Source code 7
response = {
    "classifications": ["<=", "0", "=", ">=", "<"],
    "levels": [-6.2, 0, 0, -3.0, 0],
    "number_of_solutions": 2,
}

classification_request.response = response

save_request, _ = nimbus.iterate(classification_request)







We got a new request (save_request) which contains newly computed solutions based on the classifications given. These new solutions are:


[14]:






save_request.content["objectives"]








[14]:







[array([-5.74637016, -2.79903207, -6.90637204, -3.00000115,  0.13702734]),
 array([-5.54550116e+00, -2.80835322e+00, -7.14632853e+00, -2.39820101e+00,
         5.08845965e-07])]






This request is similar to the earlier one: its content attribute will contain at least a message entry with instructions on what needs to be defined in the response attribute of save_request. In Synchronous NIMBUS, the next step would be to indicate whether we would like some of the computed solutions to be saved into an archive for later viewing. Further steps would consist of computing intermediate solutions, providing new classifications, and choosing a new preferred
solution. However, we will conclude this use case here. Further information on the implementation of Synchronous NIMBUS in DESDEO can be found in the documentation of *desde-mcdm* [https://desdeo-mcdm.readthedocs.io/en/latest/notebooks/synchronous_nimbus.html].



Use case 2: data-based problem

Here we demonstrate how a data-based multiobjective optimization problem may be solved using DESDEO and an evolutionary method found in desdeo-emo.

We will assume that the river pollution problem has no known explicit form. Instead, the have only data on the probem in the form of variable and objective vector pairs. To emulate a data-based problem, we have pre-computed a small number (100) of solutions consisting of decision variable and objective values. We can then use these points to train a surrogate model which is computationally less expensive to evaluate and can therefore be readily used in an interactive method. We assume to have
already computed the points mentioned earlier and that they are stored in a file River_Pollution.csv in a CSV format. The first two columns will consist of the decision variable values and the last five columns will consists of the objective values. We can use this data and together with desdeo-problem and pandas to formulate a data-based problem in DESDEO:


[15]:






# Source code 8
import pandas as pd
from desdeo_problem.problem import DataProblem


training_data = pd.read_csv("./data/River_pollution.csv", comment="#")

problem = DataProblem(
    data=training_data,
    variable_names=["x_0", "x_1"],
    objective_names=["f_1", "f_2", "f_3", "f_4", "f_5"],
    bounds=pd.DataFrame(
        [[0.3, 0.3], [1.0, 1.0]],
        columns=["x_0", "x_1"],
        index=["lower_bound", "upper_bound"]),
)







Next, we can train a surrogate to model each of the objectives. It is possible, and sometimes very desiderable, to use different surrogates for different objectives, but in this example we opt to use the same type of surrogate for each objective. We choose to use Gaussian regression:


[16]:






# Source code 9
from desdeo_problem.surrogatemodels.SurrogateModels import GaussianProcessRegressor

problem.train(
    models=GaussianProcessRegressor,
    model_parameters={"optimizer":"fmin_l_bfgs_b"}
)







The GaussianProcessRegressor we chose to use is a wrapper for the Gaussian process found in scikit-learn. Informatino about the hyperparameters given to the optimizer in Source code 9 can be found in scikit-learn’s documentation. However, different surrogate models are also available and readily implemented, if absent.

To solve the problem being modeled by the surrogates, we choose and evolutionary method this time, namely the interactive variant of RVEA implemented in the desdeo-emo package. We will be supplying reference points (three other types of preference may also be supplied; more information can be found in the documentation of desdeo-emo). Since RVEA comes in a non-interactive version as well, we will have to specify explicitly to be interested in the interactive version using the interact
flag. Also, we will have to specify that we will be using a problem based on surragates in a similar fashion:


[17]:






warnings.filterwarnings("ignore", category=UserWarning)
# Source code 10
from desdeo_emo.EAs import RVEA

evolver = RVEA(
    problem,
    interact=True,
    use_surrogates=True
)

(_, _, refp_request, _), _ = evolver.requests()

refp_request.response = pd.DataFrame([[-5.7, -2.8, -6.9, -3.0, 0.1]],
                                   columns=["f_1", "f_2", "f_3", "f_4", "f_5"]
                                  )

(_, _, refp_request, _), _ = evolver.iterate(refp_request)







We have now computed new solutions according to our given preferences. Let us inspect them together with the reference point using a plot:


[18]:






import matplotlib.pyplot as plt
from pandas.plotting import parallel_coordinates

objectives_df = pd.DataFrame(data=evolver.population.objectives)
objectives_df.columns = ["f_1", "f_2", "f_3", "f_4", "f_5"]
objectives_df.insert(0, "type", "Solutions")
objectives_df = objectives_df.append(
    {"type": "Reference point", "f_1": -5.7, "f_2": -2.8, "f_3": -6.9, "f_4": -3.0, "f_5": 0.1}, ignore_index=True)

parallel_coordinates(objectives_df, class_column="type", color=["#556270", "#C7F464"])








[18]:







<AxesSubplot:>











[image: ../_images/notebooks_three_simple_use_cases_38_1.png]




As seen from the plot above, quite many of the solutions roughly follow the given reference point. If none of the solutions found is attractive, we could supply new preferences to RVEA or we could otherwise tweak its parameters. However, what we have seen so far should give the rough idea how a data-based problem can be modeled and solved using an evolutionary method in DESDEO. Lastly, we will consider the case of solving a computationally expensive multiobjective optimization problem.



Use case 3: computationally expensive problem

In the case of computationally expensive problems, we may encounter unacceptably long waiting times when solving the problems interactively. This is obviously not desired. In such cases, one solution is to compute a representation of the Pareto optimal front a priori and then use the front in an interactive method to explore the available solutions. In this way, we can avoid long waiting times during the interactive solution process.

Suppose then that the river pollution problem defined at the beginning of this notebook was very expensive. To generate an approximate representaton of the Pareto optimal front, we use the implementation of NSGAIII found in desdeo-tools. We use NSGAIII’s non-interactive variant to evolve the population for 1000 generations (default) and then extract the non-dominated set of solutions from the final population by invoking the end method. This non-dominated set will then work as our
representation of the Pareto front (as is often done). In code:


[19]:






# Source code 11
from desdeo_emo.EAs import NSGAIII

evolver = NSGAIII(mo_problem, interact=False)

while evolver.continue_evolution():
    evolver.iterate()

individuals, pareto_front = evolver.end()







We then use the E-NAUTILUS method found in desdeo-mcdm. E-NAUTILUS is a good choice of interactive method when we have already computed a representation of the Pareto front. Moreover, E-NAUTILUS is a tradeoff free method, which means that during the interactive process, we will be able to always improve our solution. This is because E-NAUTILUS starts from a wortst solution (often the nadir) from which the Pareto front is then gradually approched by taking steps towards it in each iteration
according to expressed preferences. We can import E-NAUTILUS and instantiate it as:


[20]:






# Source code 12
from desdeo_mcdm.interactive import ENautilus

# 'pareto_front' stores the set of solutions computed using NSGA-III
method = ENautilus(pareto_front, ideal, nadir)

enautilus_request = method.start()







As seen, we have used the previously computed representation of the Pareto front, ideal point, and nadir point. Before we can start iterating the method, we will have to specify the number of intermediate solutions we wish to see in each iteration and the number of iterations to iterate the method for:


[21]:






print(enautilus_request.content["message"])













Please specify the number of iterations as 'n_iterations' to be carried out, and how many intermediate points to show as 'n_points'.







[22]:






# Source code 13
response = {"n_iterations": 5, "n_points": 3}

enautilus_request.response = response

enautilus_request = method.iterate(enautilus_request)







In the new request, we have now intermediate points and the bounds of the currently reachable solution on Pareto front. We can inspect them:


[23]:






print("Intermediate points:\n", enautilus_request.content["points"])
print("Upper bounds:\n", enautilus_request.content["upper_bounds"])
print("Lower bounds:\n", enautilus_request.content["lower_bounds"])













Intermediate points:
 [[-5.00567056 -2.76999623 -1.49188962 -3.53924431  0.34839229]
 [-4.92637229 -2.77351336 -1.66963492 -2.04805943  0.29001499]
 [-5.06880182 -2.77651715 -0.32125135 -2.14502368  0.3499992 ]]
Upper bounds:
 [[-4.78970405 -2.77826009 -0.89527016 -1.92932773  0.35      ]
 [-4.94393521 -2.77205621 -5.00891907 -1.97414337  0.35      ]
 [-4.75774637 -2.77526782 -0.49390469 -1.92932773  0.35      ]]
Lower bounds:
 [[ -6.31360419  -2.80612481  -7.27014419 -11.20114082   0.21653705]
 [ -6.18512349  -2.83954576  -7.45610845  -5.59351819   0.02531614]
 [ -6.33771131  -2.82751575  -7.27014419 -11.62627225   0.02531614]]






From the intermediate points and bounds shown, we can then choose our most preferred one to continue iterating. We can do this by expressing the index (starting from zero) of the point we most prefer. Choosing the last intermediate point looks like this:


[24]:






# Source code 14
response = {"preferred_point_index": 2}

enautilus_request.response = response

enautilus_request = method.iterate(enautilus_request)







Next, we would have to choose a new preferred solution from the newly computed intermediate points. We would continue until we reach the desired number of iterations and end up with a solution on the representation of the Pareto front given when instantiating ENautilus. Since the solution found would still be picked from a set of (approximate) representations of Pareto optimal solutions, we could still improve the solution using the (expensive) original problem and a achievement scalarizing
functions, for example.

The point of this use case was, however, to show how to handle a computationally expensive problem, which we have now demonstrated. Moreover, we have also shown how an evolutionary method (NSGA-III) has been hybridized with an MCDM method (E-NAUTILUS). This was a remarkably simple example, but more advanced applications are also possible.



Summary

We have seen in the considered use cases how an analytically defined problem can be solved using an MCDM method (NIMBUS); how a data-based problem can be modeled using surrogates and solved utilizing an evolutionary method (interactive RVEA); and we have seen how we can combine both evolutionary (NSGAIII) and MCDM (E-NAUTILUS) methods to solve a computationally expensive problem. In addition, we have seen the basic procedure on how to use interactive methods found in DESDEO (the request-response
structure). While these examples were quite simple, they were still and excellent showcase of the basics in applying DESDEO to solve multiobjective optimization problems.

Lastly, it is good to observe that interacting with the methods as we have in this example, was cumbersome. We highly suggest that instead some sort of user interface is provided to interface to these method. This can facilitate greatly the interaction between humans and interactive methods found in DESDEO. We are currently developing some necessary building blocks to build such an interface, but we are not ready to discuss it here yet. But stay tuned!





          

      

      

    

  

    
      
          
            
  


Contributing

We welcome anybody interested to contribute to the packages found in the DESDEO
framework. These contributions can be anything. Contributions do not have to necessarely be
ground-breaking. From fixing typos in the documentation to implementing new multiobjective
optimization methods, everything is welcome!


Guidelines and Conventions

The guidelines for code to be included in DESDEO should follow a few simple rules:


	Use spaces instead of tabs. Four spaces are used for indenting blocks when writing Python.


	Each line of code should not exceed 120 characters.


	Try to use type annotations for functions using Python’s type hints [https://docs.python.org/3/library/typing.html].


	For naming classes use CamelCase, and for naming functions and methods use snake_case.


	Do not use global or file level declarations. Try to always encapsulate your declarations inside classes.


	Classes should be designed with duck typing [https://en.wikipedia.org/wiki/Duck_typing] conventions in mind.





Docstring style

The docstring style used throughout the DESDEO framework follows the
style [https://www.Sphinx-doc.org/en/master/usage/extensions/example_google.html#example-google] dictated by Google. Each function, class, and method should be documented.




Software development

This sections contains some basic tips to get started in contributing to DESDEO.
We expect contributors to be proficient in at least the basics of Python.


Version control

DESDEO and all of its packages are under version control managed with git.
It is highly suggested that anybody wanting to contribute to DESDEO should be first
familiar with the basic principles of git. If terms such as branching, committing,
merging, staging, and cloning are alien to the reader, a brief review of the
basics of git is in place before contributing to DESDEO can start. At least if the reader
wishes to make the experience as painless as possible…

For resources to learn git, git’s official documentation [https://git-scm.com/doc] is a very good place to start.
Many other resources exists on the web as well. We will not be listing them all. However, if a
gamified approach is desired instead of having to read documentation, an in-browser tutorial
is available here [https://learngitbranching.js.org/].



Project management

The packages in DESDEO depend on many external Python packages. Sometimes a particular version
of an external package is needed, which does not match the current version of the same
external package on the computer’s system DESDEO is going to be developed on. This can lead
to many dependency problems. It is therefore
highly recommended to
use virtual environments when developing DESDEO to separate the packages needed by DESDEO from the
packages present on the system’s level.

Poetry [https://python-poetry.org/] is a modern and powerful tool to manage Python package dependencies and for building Python
packages. Poetry is used throughout the DESDEO framework to manage and build its packages. While Poetry
is not a tool for managing virtual environments, it nonetheless offers very simple commands to trivialize
the task. Anybody contributing code to DESDEO should be familiar with Poetry.

Sometimes the Python version installed on a system is not compatible with the Python version required
in DESDEO (3.7.x). In this case, it is recommended to use an external tool, such as pyenv [https://github.com/pyenv/pyenv], to facilitate
the task of switching from one Python version to an other.



Example on how to get started

Once the reader is familiar with git and Poetry, starting to develop DESDEO should proceed
relatively painlessly. Suppose we have a feature X which we wish to implement in DESDEO’s desdeo-mcdm
package. It is higly recommended to first fork the desdeo-package on GitHub on a separate repository
and then cloning that repository. When doing so, use the forked repository’s URL instead of the
main repotiry’s URL when cloning the project using git. Make sure to also setup your forked repository
to be configured [https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/configuring-a-remote-for-a-fork] properly to be able to synchronize it later with the upstream repository.

We proceed by cloning the repository on our local machine:

$ git clone https://github.com/industrial-optimization-group/desdeo-mcdm





Next, we should switch to the newly created directory:

$ cd desdeo-mcdm





We can now easily use Poetry to first create a Python virtual environment by issuing Poetry’s shell-
command and then use Poetry’s install-command to install the desdeo-mcdm package locally in our
newly created virtual environment:

$ poetry shell
$ poetry install





The install command might take a while. Once that is done, desdeo-mcdm should now be installed
in our virtual environment and be fully usable in it.

To start implemeting our new feature X, we should start by making a new branch and switching to it
using git. This ensures that the changes we make are relative to desdeo-mcdm’s master branch,
at least the version of it which was available at the time of cloning it. Let us create a new branch now
for our featrue X named feature-X:

$ git branch feature-X
$ git checkout feature-X





We are now ready to start implementing our changes to the package. Frequent committing is
encouraged.

Suppose that we are now done impelenting our feature X. We now wish it was included to the master
branch of desdeo-mcdm. To do so, we need to first switch back to the master branch

$ git checkout master





Then we need to make sure the master branch is up-to-date with the upstream version of the branch
by issuing a pull. (If a forked repository is being used, the repository must first be
synchronized [https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/syncing-a-fork] with the upstream repository.)

$ git pull





Lastly, we will have to merge our feature-X branch containing our changes with the master branch

$ git merge feature-X





If all went well, we should now be ready to issue a pull request. However, if any conflicts emerge during the
merging of the branches, these conflicts should be addressed before making a pull request. When the merge
is free of conflicts, a pull request can be issued on GitHub or from the terminal. A maintainer of the repository
will then review your changes and either accept them into the upstream or request revisions to be made before
the new code can be accepted.




Documentation


Introduction

To build the documentation for the DESDEO framework and its various modules,
Sphinx [https://www.Sphinx-doc.org/en/master/] is used. Sphinx offers excellent utilities for automatically
generating API documentation based on existing documentation located in
source code, and for adding custom content.

Automatically generated documentation and custom content is specified as
reStructuredText [https://docutils.sourceforge.io/rst.html]. ReStructuredText is a markup language
just like Markdown or html, but offers the possibility to extend the language
for specific domains. The file extention .rst is used for files containing
reStructuredText content. Sphinx can then be used to generate documentation
in various formats, such as html and pdf, based on content provided as
reStructuredText.



Resources to get started with Sphinx

The official documentation offers a good guide [https://www.Sphinx-doc.org/en/master/usage/quickstart.html] for getting started. It is
advised to read through the guide before contributing to the documentation.
After reading the guide, the reader is encouraged to check out the contents
of the source file used to generate the current page. The source file can be
accessed by going to the top of this page and following the Edit on GitHub-link.
It is also advised to check out the content of the docs file found in the main
repository [https://github.com/industrial-optimization-group/DESDEO/tree/migrate-to-new/docs] of the DESDEO framework.
After checking the source file used to generate this page, the user should be
familiar with at least basic sectioning, hyperlinks, code blocks, note blocks,
and lists.

Other useful resources include:



	Official [https://docutils.sourceforge.io/rst.html] documentation for reStructuredText.


	ReStructuredText syntax cheatsheet [https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst].


	A conference talk [https://www.youtube.com/watch?v=0ROZRNZkPS8] about Sphinx given during PyCon 2018. (YouTube has also
many other videos on Sphinx as well)


	A more through tutorial [https://matplotlib.org/sampledoc/] written by the matplotlib developers on how to
achieve a documentation similar to theirs.









Extensions

In the DESDEO framework, some Sphinx extensions are used to faciliate automatic documentation generation.
At least the following extensions are used:

Included in Sphinx:


	Sphinx.ext.autodoc [https://www.Sphinx-doc.org/en/master/usage/extensions/autodoc.html] for automatically generating documentation based on docstrings.


	Sphinx.ext.napoleon [https://www.Sphinx-doc.org/en/master/usage/extensions/napoleon.html] for parsing the Google styled docstrings.


	Sphinx.ext.viewcode [https://www.Sphinx-doc.org/en/master/usage/extensions/viewcode.html] for accessing the documented source code from the documentation itself.




User provided extensions:


	Sphinx-autodoc-typehints [https://github.com/agronholm/Sphinx-autodoc-typehints] for better type hints.


	automodapi [https://Sphinx-automodapi.readthedocs.io/en/latest/index.html] for even better automatic API documentation generation.


	nbsphinx [https://nbsphinx.readthedocs.io/en/0.7.1/] for converting Python notebooks into rst pages.






Building and testing the documentation

If Sphinx has been setup following the official quick guide [https://www.Sphinx-doc.org/en/master/usage/quickstart.html], the
documentation can be build by running the commnad

make html





in the root direcotry containing the documentation. This will produce
documentation in an html format residing in the _build folder in the
documentation’s root directory. To view the documentation built, use any web
browser. For example, with Firefox, this is achieved by issuing the command

firefox _build/html/index.html






Note

The directory _build generated by sphinx-quickstart should not be
under version control.





Deployment


Note

Most of the content in this section is relevant only when setting up the
documentation for the first time for a module.



The documentation for each of the DESDEO modules is hosted on
readthedocs.org [https://www.readthedocs.org]. For the documentation to be build correctly, a YAML
congiguration file named .readthedocs.yml should be present in the root
directory of the project (not the root directory of the documentation!) A
minimal configarion file could look like this:

# Required
version: 2

# Build documentation in the docs/ directory with Sphinx
Sphinx:
configuration: docs/conf.py

# Optionally set the version of Python and requirements required to build your docs
python:
version: 3.7
install:
    - requirements: docs/requirements.txt





Especially the locations of the configuration files docs/conf.py and
docs/requirements.txt are important to enable readthedocs to correctly
build the documentation.


Note

The requirements file should contain the requirements for building the
documentation. It does not necessarely need to contain all the
requirements of the module the documentation is being build for.
However, for building the documentation for some of the modules, like
desdeo-mcdm for example, the whole module needs to be installed for
Sphinx to be able to compile the documentation. In that case, having the
project’s whole requirements in the requirements file pointed at in
.readthedocs.yml is justified.



If a requirements.txt if required, but poetry is used to manage
dependencies, then the command

poetry export --dev -f requirements.txt > requirements.txt





can be used to generate a requirements file.

For more configuration options, go here [https://docs.readthedocs.io/en/stable/config-file/v2.html].
The whole documentation for readthedocs can be found here [https://docs.readthedocs.io/en/stable/index.html].



Caveats

Some common caveats with Sphinx:



	The intendation Sphinx expects in the reStructuredText files is three spaces
to specify the scope of the options and content of a
directive. Options should follow the directive immediately on the
following line, one option per line, and the content should be separated by
one blank line from the options (if no options are provided, the blank line
should be between the directive and the contents). For example, the following is correct:

.. toctree::
   :maxdepht: 2

   content
   morecontent





The following, however, is incorrect:

.. toctree::
   :maxdepht: 2
   content
   morecontent







	If the contents of an item in a list span more than one line, the lines
following the first line should have their indentation starting at the same
level as the content on the first line. I.e.:

- This is the first line
  this is the second line
  this is the third line
  notice the indentation

















          

      

      

    

  

    
      
          
            
  


Glossary


	decision maker, DM

	A domain expert with adequate expertise related to an optimization
problem able to provide preference information.



	Pareto optimal solution

	A feasible solution to a multiobjective optimization problem which
corresponds to an objective vector that cannot be exchanged for any
other objective vector resulting from some other feasible solution
wihtout having to make a trade-off in at least one objective value.



	Pareto front

	The set of Pareto optimal solutions.



	nadir (point)

	The worst possible objective values of a Pareto front.



	ideal (point)

	The best possible objective values of a Pareto front.



	reference point

	Desirable aspiration levels for each objective function.
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Page Not Found

We cannot find the page. Please try:


	Starting the navigation from the homepage [https://desdeo.readthedocs.io/en/latest/]


	Filing an issue in Github [https://github.com/industrial-optimization-group/DESDEO/issues]
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